منابع مشابه
Counting Colored Random Triangulations
We revisit the problem of enumeration of vertex-tricolored planar random triangulations solved in [Nucl. Phys. B 516 [FS] (1998) 543-587] in the light of recent combinatorial developments relating classical planar graph counting problems to the enumeration of decorated trees. We give a direct combinatorial derivation of the associated counting function, involving tricolored trees. This is gener...
متن کاملCounting triangulations and pseudo-triangulations of wheels
Motivated by several open questions on triangulations and pseudotriangulations, we give closed form expressions for the number of triangulations and the number of minimum pseudo-triangulations of n points in wheel configurations, that is, with n − 1 in convex position. Although the numbers of triangulations and pseudotriangulations vary depending on the placement of the interior point, their di...
متن کاملCounting Triangulations of Configurations
Calculating the number of Euclidean triangulations of a convex polygon P with vertices in a finite subset C ⊂ R2 containing all vertices of P seems to be difficult and has attracted some interest, both from an algorithmic and a theoretical point of view, see for instance [1], [2], [3], [4], [5], [7], [9], [10], [11]. The aim of this paper is to describe a class of configurations, convex near-go...
متن کاملCounting Lattice Triangulations
We discuss the problem to count, or, more modestly, to estimate the number f(m,n) of unimodular triangulations of the planar grid of size m× n. Among other tools, we employ recursions that allow one to compute the (huge) number of triangulations for small m and rather large n by dynamic programming; we show that this computation can be done in polynomial time if m is fixed, and present computat...
متن کاملCounting Triangulations Approximately
We consider the problem of counting straight-edge triangulations of a given set P of n points in the plane. Until very recently it was not known whether the exact number of triangulations of P can be computed asymptotically faster than by enumerating all triangulations. We now know that the number of triangulations of P can be computed in O∗(2n) time [2], which is less than the lower bound of Ω...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Physics B
سال: 2002
ISSN: 0550-3213
DOI: 10.1016/s0550-3213(02)00582-5